114 research outputs found

    Structure and evolution of protoplanetary disks

    Get PDF
    We present here a few thoughts on how high-angular resolution observations can give clues to some properties of protoplanetary disks that are fundamental to theories of planet formation. High-angular resolution infrared spectroscopy, either with a large single mirror telescope, or by using infrared interferometry, allows us to probe the abundance of thermally processed dust in the disk as a function of distance to the star. We show that this radial abundance profile can give information about the early evolution of the protoplanetary disk as well as about the nature of the turbulence. Since turbulence is one of the main ingredients in theories of planet formation, this latter result is particularly important. We also show that Nature itself provides an interesting way to perform high-angular resolution observations with intermediate-angular resolution telescopes: if a disk has a (nearly) edge-on orientation and is located in a low-density ambient dusty medium, the disk casts a shadow into this medium, as it blocks the starlight in equatorial direction. We argue how these shadows can be used to characterize the dust in the disk

    High Contrast L' Band Adaptive Optics Imaging to Detect Extrasolar Planets

    Get PDF
    We are carrying out a survey to search for giant extrasolar planets around nearby, moderate-age stars in the mid-infrared L' and M bands (3.8 and 4.8 microns, respectively), using the Clio camera with the adaptive optics system on the MMT telescope. To date we have observed 7 stars, of a total 50 planned, including GJ 450 (distance about 8.55pc, age about 1 billion years, no real companions detected), which we use as our example here. We report the methods we use to obtain extremely high contrast imaging in L', and the performance we have obtained. We find that the rotation of a celestial object over time with respect to a telescope tracking it with an altazimuth mount can be a powerful tool for subtracting telescope-related stellar halo artifacts and detecting planets near bright stars. We have carried out a thorough Monte Carlo simulation demonstrating our ability to detect planets as small as 6 Jupiter masses around GJ 450. The division of a science data set into two independent parts, with companions required to be detected on both in order to be recognized as real, played a crucial role in detecting companions in this simulation. We mention also our discovery of a previously unknown faint stellar companion to another of our survey targets, HD 133002. Followup is needed to confirm this as a physical companion, and to determine its physical properties.Comment: 8 pages, 4 figure

    The Exoplanet Population Observation Simulator. I - The Inner Edges of Planetary Systems

    Full text link
    The Kepler survey provides a statistical census of planetary systems out to the habitable zone. Because most planets are non-transiting, orbital architectures are best estimated using simulated observations of ensemble populations. Here, we introduce EPOS, the Exoplanet Population Observation Simulator, to estimate the prevalence and orbital architectures of multi-planet systems based on the latest Kepler data release, DR25. We estimate that at least 42% of sun-like stars have nearly coplanar planetary systems with 7 or more exoplanets. The fraction of stars with at least one planet within 1 au could be as high as 100% depending on assumptions about the distribution of single transiting planets. We estimate an occurrence rate of planets in the habitable zone around sun-like stars of eta_earth=36+-14%. The innermost planets in multi-planet systems are clustered around an orbital period of 10 days (0.1 au), reminiscent of the protoplanetary disk inner edge or could be explained by a planet trap at that location. Only a small fraction of planetary systems have the innermost planet at long orbital periods, with fewer than ~8% and ~3% having no planet interior to the orbit of Mercury and Venus, respectively. These results reinforce the view that the solar system is not a typical planetary system, but an outlier among the distribution of known exoplanetary systems. We predict that at least half of the habitable zone exoplanets are accompanied by (non-transiting) planets at shorter orbital periods, hence knowledge of a close-in exoplanet could be used as a way to optimize the search for Earth-size planets in the Habitable Zone with future direct imaging missions.Comment: Accepted in AAS journals, code available on githu

    Hidden Worlds: Dynamical Architecture Predictions of Undetected Planets in Multi-planet Systems and Applications to TESS Systems

    Full text link
    Multi-planet systems produce a wealth of information for exoplanet science, but our understanding of planetary architectures is incomplete. Probing these systems further will provide insight into orbital architectures and formation pathways. Here we present a model to predict previously undetected planets in these systems via population statistics. The model considers both transiting and non-transiting planets, and can test the addition of more than one planet. Our tests show the model's orbital period predictions are robust to perturbations in system architectures on the order of a few percent, much larger than current uncertainties. Applying it to the multi-planet systems from TESS provides a prioritized list of targets, based on predicted transit depth and probability, for archival searches and for guiding ground-based follow-up observations hunting for hidden planets.Comment: 24 pages, 14 figures, 3 tables, accepted to Astronomical Journa
    • …
    corecore